• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
ZISC
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help

ZISC

Navigation Navigation close
  • The ZISC
    • About the ZISC
    • Organigram
    • List of ZISC Members
    • Staff
    Portal The ZISC
  • Research
    • Member Profiles
    • Projects
      • Current Projects
      • Completed Projects
    • Publications
    • The P&G SimCenter
    • Software
    • Student Theses/Assistant Jobs
    Portal Research
  • COVID-19
  • Activities
    • Collaboration Possibilities for Industrial Partners
    • Education
    • Meeting Organization
    • Software Acquisition
    Portal Activities
  • Contact and Downloads
  1. Home
  2. COVID-19
  3. Papers and Preprints
  4. Memory-based meso-scale modeling of Covid-19

Memory-based meso-scale modeling of Covid-19

In page navigation: COVID-19
  • People
  • Education
  • Research
  • Papers and Preprints
    • Selecting pharmacies for COVID-19 testing
    • Expanding Access to COVID-19 Tests
    • Timing social distancing
    • Analytical Mechanics
    • Decomposition of the SARS-CoV-2-ACE2 interface reveals a common trend among emerging viral variants
    • MD Simulations of SARS-CoV-2 Spike
    • Memory-based meso-scale modeling of Covid-19
    • Modeling Exit Strategies
    • Integro-differential equations

Memory-based meso-scale modeling of Covid-19

Memory-based meso-scale modeling of Covid-19

Publication: Memory-based meso-scale modeling of Covid-19

Authors: Andreas Kergaßner, Christian Burkhardt, Dorothee Lippold, Matthias Kergaßner, Lukas Pflug, Dominik Budday, Paul Steinmann, Silvia Budday

Link to publication: Computational mechanics

Abstract: 
The COVID-19 pandemic has led to an unprecedented world-wide effort to gather data, model, and understand the viral spread. Entire societies and economies are desperate to recover and get back to normality. However, to this end accurate models are of essence that capture both the viral spread and the courses of disease in space and time at reasonable resolution. Here, we combine a spatially resolved county-level infection model for Germany with a memory-based integro-differential approach capable of directly including medical data on the course of disease, which is not possible when using traditional SIR-type models. We calibrate our model with data on cumulative detected infections and deaths from the Robert-Koch Institute and demonstrate how the model can be used to obtain county- or even city-level estimates on the number of new infections, hospitality rates and demands on intensive care units. We believe that the present work may help guide decision makers to locally fine-tune their expedient response to potential new outbreaks in the near future.

 

 

Friedrich-Alexander-Universität Erlangen-Nürnberg
Zentralinstitut für Scientific Computing

Martensstrasse 5a
91058 Erlangen
  • Impressum
  • Datenschutz
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up